Развитие кибернетики как науки было подготовлено многочисленными работами ученых в области математики, механики, автоматического управления, вычислительной техники, физиологии высшей нервной деятельности.
Основы теории автоматического регулирования и теории устойчивости систем регулирования содержались в трудах выдающегося русского математика и механика Ивана Алексеевича Вышнеградского (1831—1895 гг.), обобщившего опыт эксплуатации и разработавшего теорию и методы расчета автоматических регуляторов паровых машин.
Общие задачи устойчивости движения, являющиеся фундаментом современной теории автоматического управления, были решены одним из крупнейших математиков своего времени Александром Михайловичем Ляпуновым (1857—1918 гг.), многочисленные труды которого сыграли огромную роль в разработке теоретических вопросов технической кибернетики.
Работы по теории колебаний, выполненные коллективом ученых под руководством известного советского физика и математика Александра Александровича Андронова (1901—1952 гг.), послужили основой для решения впоследствии ряда нелинейных задач теории автоматического регулирования. А. А. Андронов ввел в теорию автоматического управления понятия и методы фазового пространства, сыгравшие важную роль в решении задач оптимального управления.
Исследование процессов управления в живых организмах связывается прежде всего с именами великих русских физиологов - Ивана Михайловича Сеченова (1829—1905 гг.) и Ивана Петровича Павлова (1849—1936 гг.). И. М. Сеченов еще во второй половине прошлого столетия заложил основы рефлекторной теории и выска¬зал весьма смелое для своего времени положение, что мысль о машинности мозга — клад для физиолога, коренным образом проти¬воречащее господствовавшей тогда доктрине о духовном начале человеческого мышления и психики.
Блестящие работы И. П. Павлова обогатили физиологию выс¬шей нервной деятельности учением об условных рефлексах и фор¬мулировкой принципа обратной афферентации, являющегося ана¬логом принципа обратной связи в теории автоматического регули¬рования. Труды И. П. Павлова стали основой и отправным пунк¬том для ряда исследований в области кибернетики, и биологиче¬ской кибернетики в частности.
Материальной базой реализации управления с использованием методов кибернетики является электронная вычислительная тех¬ника. При этом «кибернетическая эра» вычислительной техники характеризуется появлением машин с «внутренним программиро¬ванием» и «памятью», т. е. таких машин, которые в отличие от ло¬гарифмической линейки, арифмометров и простых клавишных машин могут работать автономно, без участия человека, после того как человек разработал и ввел в их память программу решения сколь угодно сложной задачи. Это позволяет машине реализовать скорости вычислений, определяемые их организацией, элементами и схемами, не ожидая подсказки «что дальше делать» со стороны человека-оператора, не способного выполнять отдельные функции чаще одного-двух раз в секунду. Именно это и позволило достичь в настоящее время быстродействия ЭВМ, характеризующегося сотнями тысяч, миллионами, а в уникальных образцах — сотням миллионов арифметических операций в секунду.
К наиболее ранним и близким прообразам современных цифровых ЭВМ относится «аналитическая машина» английского математика Чарльза Беббиджа (1792—1871 гг.). В первой половине XIX века он разработал проект машины для автоматического решения задач, в котором гениально предвосхитил идею современны кибернетических машин. Машина Беббиджа содержала арифметическое устройство («мельницу») и память для хранения чисел («склад»), т. е. основные элементы современных ЭВМ.
Большой вклад в развитие кибернетики и вычислительной техники сделан английским математиком Аланом Тьюрингом (1912-1954 гг.). Выдающийся специалист по теории вероятностей и математической логике, Тьюринг известен как создатель теории универсальных автоматов и абстрактной схемы автомата, принципиально пригодного для реализации любого алгоритма. Этот автомат с бесконечной памятью получил широкую известность как «машина Тьюринга» (1936 г.). После второй мировой войны Тьюринг разработал первую английскую ЭВМ, занимался вопросами программирования и обучения машин, а в последние годы жизни - математическими вопросами биологии.
Исключительное значение для развития кибернетики имели работы американского ученого (венгра по национальности) Джона фон Неймана (1903—1957 гг.) — одного из самых выдающихся и разносторонних ученых нашего века. Он внес фундаментальный вклад в область теории множеств, функционального анализа, квантовой механики, статистической физики, математической логики теории автоматов, вычислительной техники. Благодаря ему получили развитие новые идеи в области этих научных направлений. Д. фон Нейман в середине 40-х годов разработал первую цифровую ЭВМ в США. Он — создатель новой математической науки — теории игр, непосредственно связанной с теоретической кибернетикой. Им разработаны пути построения сколь угодно надежных систем из ненадежных элементов и доказана теорема о способности достаточно сложных автоматов к самовоспроизведению и к синтезу более сложных автоматов.
Важнейшие для кибернетики проблемы измерения количества информации разработаны американским инженером и математиком Клодом Шенноном, опубликовавшим в 1948 г. классический труд «Теория передачи электрических сигналов при наличии помех» в котором заложены основные идеи существенного раздела кибернетики — теории информации.
Ряд идей, нашедших отражение в кибернетике, связан с именем советского математика академика А. Н. Колмогорова. Первые в мире работы в области линейного программирования (1939 г.) принадлежат академику Л. В. Канторовичу.
Необходимо отметить и труды А. А. Богданова (1873—1928 гг.) в этой области. Всем известна острая критика, которой В. И. Ленин подверг А. А. Богданова за его путаные философские построения. Но Богданов был также автором ряда работ по политической эко¬номии и большой монографии «Всеобщая организационная наука (тектология)». Эта работа, опубликованная впервые в 1912—1913 гг., а затем изданная в виде трехтомника в 1925—1929 гг., содержит ряд оригинальных идей, предвосхищающих многие положения сов¬ременной кибернетики.
Появление в 1948 г. работы Н. Винера было представлено на Западе некоторыми журналистами как сенсация. О кибернетике, вопреки мнению самого Винера, писали как о новой универсальной науке, якобы способной заменить философию, объясняющую про¬цессы развития в природе и обществе. Все это наряду с недостаточ¬ной осведомленностью отечественных философов с первоисточни¬ками из области теории кибернетики привело к необоснованному отрицанию ее в нашей стране как самостоятельной науки.
Однако уже в середине 50-х годов положение изменилось. В 1958 г. в русском переводе выходит первая книга Н. Винера, а в 1959 г.— книга «Введение в кибернетику» английского биолога У. Р. Эшби, написанная им в 1958 г. Эта, а также другие работы Эшби, в частности его монография «Конструкция мозга» (1952 г.) принесли ученому широкое признание в области кибернетики, и биологической кибернетики в частности.
Интенсивное развитие кибернетики в нашей стране связано с деятельностью таких крупных ученых, как академик А. И. Берг (1893—1979 гг.) — выдающийся ученый, организатор и бессмен¬ный руководитель Научного совета по кибернетике АН СССР;
академик В. М. Глушков (1923—1982 гг.) — математик и автор ряда работ по кибернетике, теории конечных автоматов, теорети¬ческим и практическим проблемам автоматизированных систем управления; академик В. А. Котельников, разработавший ряд важ¬нейших проблем теории информации; академик С. А. Лебедев (1902—1974 гг.), под руководством которого был создан ряд быстро¬действующих ЭВМ; член-корреспондент АН СССР А. А. Ляпу¬нов (1911—1973 гг.)—талантливый математик, сделавший очень много для распространения идей кибернетики в нашей стране; академик А. А. Харкевич (1904—1965 гг.) — выдающийся ученый в области теории информации, и многих других. Большой вклад в развитие экономической кибернетики внесли академики Н. П. Федоренко и А. Г. Аганбегян. Первые работы по сельскохозяйствен¬ной кибернетике выполнены М. Е. Браславцем, Р. Г. Кравченко, И. Г. Поповым. Поэтому не случайно, что признавая конкретные достижения отдельных русских и советских ученых в области ки¬бернетики, некоторые зарубежные исследователи по праву назы¬вают второй родиной этой науки Советский Союз.
Статьи по теме:
Электронный подходПредупреждение компьютерных преступленийАрхитектура Risc Вычислительных ЯдерВаш подросток безопасно использует интернет?Простые и быстрые способы проектирования собственных CompactPCI модулей ввода/выводаЭлектромагнитные поляIBM передаёт фреймворк ACTF в дар EclipseУправление доступом к файпам и каталогамПрограмма электронной записной книжкиГосударственное регулирование информатизации УкраиныКритерий пользователя ЭСВОПРОС ДОВЕРИЯ К РЕЗУЛЬТАТАМ ДЕЯТЕЛЬНОСТИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТАКак сделать правильный выбор? 1С:Предприятие 7.7. или 8.0СФЕРЫ ПРИМЕНЕНИЯ КОМПЬЮТЕРОВПроцессорБазовые понятия WindowsОткрытие документа из Главного меню Команды консоли восстановления Краткие сведения о кодировках кириллицы Краткий обзор антивирусных программПросмотр графики в режиме слайд-шоу SHADOW MASKБесплатный Интернет Или Как Стать ХакеромИнформационное общество: глобальное, европейское, украинскоеПреимущества Мобильной ТорговлиСистемы электронной почтыРазвитие Железной Индустрии Или Кому Сейчас Нужны Многоядерные ПроцессорыЦЕЛЬ СОЗДАНИЯ САПРCMOS (полупостоянная память)Склонность CompactPCI- продуктов к быстрому устареваниюЧто ваш ребенок делает в он-лайн?Новый вид Windows VistaДва формата таблицы FAT3Ds Max 2008 (Rip)Доски объявлений (USENET news)Поколения ЭВМLEP-дисплеи: день сегодняшнийРасследование создание: распространение и использование вредоносных программ для ЭВМ SLOT MASKКопирование цвета области рисунка СтримерыОткрытие документа с Рабочего стола Модуль F_AntiПолитика конфиденциальности Microsoft Internet ExplorerCOSMOS/M трансляторыМетодическая сущность деловой игрыДрукувальні пристрої, графобудівники Операционные системы которые могут управлять CompactPCI- компьютерамиПередача файлов (ftp)Настройка мультизагрузчикаПоиск людей (Кто есть Who)Как Правильно Выбрать БумагуЗадачи, реализуемые на квантовых компьютерахКак работает вирусРазбор недостатков БУОК-4