Соглашение | Публикация статей

Шторы - calon.by

Планирование в операционной системе UNIX
Категория: Статьи

На прошлой лекции мы с вами посмотрели, каким образом может осуществляться планирование в операционной системе UNIX. Мы с вами определили, что в принципе планированию в системе поддаются два типа процессов. Первый тип - это те процессы, которые находятся в оперативной памяти и между которыми происходит разделение времени ЦП. Мы выяснили, что этот механизм достаточно прост и строится на вычислении некоторого значения приоритета. А что будет, если системная составляющая достигнет максимального значения? В этом случае у процесса просто будет низший приоритет. Второй тип процессов - процессы, которые находятся на диске, - поддается планированию свопинга. Любой процесс в системе может находиться в двух состояниях - либо он весь откачан на ВЗУ, либо он весь находится в оперативной памяти. И в том и в другом случае с процессом ассоциировано некоторое значение P_TIME, которое растет по мере нахождения процесса в этом конкретном состоянии. Это значение обнуляется, когда процесс меняет свое состояние (то есть перекачивается в оперативную память или обратно). В свою очередь система использует P_TIME как значение некоторого приоритета (чем больше это значение, тем более вероятно, что процесс сменит свой статус).
Возникал вопрос, что является причиной для инициации действия по докачке процесса из области свопинга в оперативную память. Этот вопрос не имеет однозначного ответа, потому что в каждом UNIX-е это сделано по-своему. Есть два решения. Первое решение заключается в том, что при достижении P_TIME некоторого граничного значения операционная система начинает стараться его перекачать в оперативную память для дальнейшей обработки. Второе возможное решение может состоять в том, что имеется некоторое условие на системную составляющую нулевого процесса (нулевой процесс - это ядро). Как только в системе возникает ситуация, что ядро начинает работать очень много, - это становится признаком того, что система недогружена, т.е. у системы может быть много процессов в оперативной памяти, но они все занимаются обменом, и ЦП простаивает. Система может в этой ситуации какие-то процессы откачать, а какие-то ввести в мультипрограммную обработку.
Мы с вами говорили о том, что разные UNIX-ы могут по-разному представлять процесс в ходе его обработки. Некоторые UNIX-ы представляют тело процесса как единое целое (и код, и данные), и все перемещения осуществляются согласно тому, что это единое целое. Некоторые (современные) UNIX-ы рассматривают процесс как объединение двух сегментов - сегмента кода и сегмента данных. С этим связаны проблемы запуска процессов, планирования времени процессора и планирования свопинга.
При запуске какого-то процесса система должна понять, нет ли этого процесса в числе уже запущенных, чтобы не запускать лишний сегмент кода, а привязать новые данные к уже функционирующему сегменту кода. Это определяется достаточно просто - в контексте процесса есть параметр, который содержит значение ИД (индексного дескриптора) файла, из которого был запущен данный процесс. И когда система пытается загрузить новый процесс (из файла), то перед этим осуществляется просмотр контекстов существующих процессов, и система смотрит, нет ли уже в оперативной памяти процесса с заданным ИД, т.е. процесса, запущенного из того же файла. Аналогично происходит учет при свопировании, т.е. сначала свопированию отдаются сегменты данных, а затем могут рассматриваться кодовые сегменты. Обращаю внимание, что при выполнении функции exec в контексте процесса сменится соответствующая информация об ИД.
Напоминаю, что цель нашего курса не есть изучение того, как реализована та или иная функция в той или иной версии системы UNIX. Мы хотим посмотреть, как это можно сделать, чтобы у вас не возникало ощущения чуда, когда вы видите работающую операционную систему, и вас не пробирала дрожь, что это нечто сверхъестественное. Все предельно просто. Есть правило: чем более системной является программа, тем более прозрачными должны быть алгоритмы и использованные идеи. Мудреные программы живут с трудом, и это подтверждено практикой. Прозрачные программы живут долго. Пример - UNIX - прозрачная программа, и пример Windows - программа, построенная на очень высоком уровне, но там нет прозрачности на всех уровнях, и, к сожалению, система имеет достаточное количество особенностей, которые приводят к непредсказуемым результатам ее работы. Так везде. Если мы посмотрим языки программирования - был совершенно фантастический проект языка АДА, когда на конкурсной основе были образованы несколько профессиональных команд, которые разрабатывали язык конца XX века. Он должен был уметь делать все. Получилась очень красивая вещь. С профессиональной точки зрения, этот язык во всем хорош, но он не нашел практического применения, потому что сложен. Совершенно «бездарный» язык Си существует и еще долго будет существовать. То же самое можно сказать о языках Вирта (это дядя, который придумал Паскаль, Модулу и Оберон) - они тоже не прижились.

Процессы и взаимодействие процессов

С этого момента времени мы начинаем долго и упорно рассматривать различные способы взаимодействия процессов в операционной системе UNIX. Маленькое техническое добавление. Я сейчас вам продекларирую две системные функции, которыми мы будем пользоваться впоследствии. Это функции дублирования файловых дескрипторов (ФД).
int dup(fd); int dup2(fd, to_fd);
int fd; int fd, to_fd;
Аргументом функции dup является файловый дескриптор открытого в данном процессе файла. Эта функция возвращает -1 в том случае, если обращение не проработало, и значение, большее либо равное нулю, если работа функции успешно завершилась. Работа функции заключается в том, что осуществляется дублирование ФД в некоторый свободный ФД, т.е. можно как бы продублировать открытый файл.
Функция dup2 дублирует файловый дескриптор fd в некоторый файловый дескриптор с номером to_fd. При этом, если при обращении к этой функции ФД, в который мы хотим дублировать, был занят, то происходит закрытие файла, работающего с этим ФД, и переопределение ФД.
Пример:
int fd;
char s[80];
fd = open(«a.txt»,O_RDONLY);
dup2(fd,0);
close(fd);
gets(s,80);

Программа открывает файл с именем a.txt только на чтение. ФД, который будет связан с этим файлом, находится в fd. Далее программа обращается к функции dup2, в результате чего будет заменен стандартный ввод процесса на работу с файлом a.txt. Далее можно закрыть дескриптор fd. Функция gets прочтет очередную строку из файла a.txt. Вы видите, что переопределение осуществляется очень просто.

Программные каналы. Сначала несколько слов о концепции. Есть два процесса, и мы хотим организовать взаимодействие между этими процессами путем передачи данных от одного процесса к другому. В системе UNIX для этой цели используются т.н. каналы. С точки зрения программы, канал есть некая сущность, обладающая двумя файловыми дескрипторами. Через один ФД процесс может писать информацию в канал, через другой ФД процесс может читать информацию из канала. Так как канал это нечто, связанное с файловыми дескрипторами, то канал может передаваться по наследству сыновним процессам. Это означает, что два родственных процесса могут обладать одним и тем же каналом. Это означает, что если один процесс запишет какую-то информацию в канал, то другой процесс может прочесть эту информацию из этого же канала.
Особенности работы с каналом. Под хранение информации, передаваемой через канал, выделяется некоторый фиксированный объем оперативной памяти. В некоторых системах этот буфер может быть продолжен на внешнюю память. Что происходит, если процесс хочет записать информацию в канал, а буфер переполнен, или прочесть информацию из канала, а в буфере нет еще данных? В обоих случаях процесс приостанавливает свое выполнение и дожидается, пока не освободится место либо, соответственно, пока в канале не появится информация. Надо заметить, что в этих случаях работа процесса может изменяться в зависимости от установленных параметров, которые можно менять программно (и реакцией на эти ситуации может быть не ожидание, а возврат некоторого кода ответа).
Давайте посмотрим, как эти концепции реализуются в системе. Есть функция pipe. Аргументом этой функции должен быть указатель на массив двух целых переменных.
int pipe(pipes);
int pipes[2];
Нулевой элемент массива после обращения к функции pipe получает ФД для чтения, первый элемент этого массива получает ФД для записи. Если нет свободных ФД, то эта функция возвращает -1. Признак конца файла для считывающего дескриптора не будет получен до тех пор, пока не закрыты все дескрипторы, связанные с записью в этот канал. Рассмотрим небольшой пример:
char *s = «Это пример»;
char b[80];
int pipes[2];
pipe(pipes);
write(pipes[1],s, strlen(s)+1);
read(pipes[0],s, strlen(s)+1);
Это пример копирования строки (понятно, что так копировать строки не надо, и вообще никто функцией pipe в пределах одного процесса не пользуется). В этом примере и в последующих не обрабатываются случаи отказа. Теперь давайте рассмотрим более содержательный пример. Напишем пример программы, которая запустит и свяжет каналом два процесса:
main()
{
int fd[2];
pipe(fd); /* в отцовском процессе образуем два дескриптора канала */
if (fork()) /* образуем процесс-сын, у которого будут те же дескрипторы */
{ /* эта часть программы происходит в процессе-отце */
dup2(fd[1],1); /* заменяем стандартный вывод выводом в канал */
close(fd[1]); /* закрываем дескрипторы канала */
close(fd[0]); /* теперь весь вывод итак будет происходить в канал */
execl(«/bin/ls»,«ls»,(char*)0); /* заменяем тело отца на ls */
} /* отсюда начинает работать процесс-сын */
dup2(fd[0],0); /* в процессе сыне все делаем аналогично */
close(fd[0]);
close(fd[1]);
execl(«/bin/wc»,«wc»,(char*)0);
}
Этот пример связывает конвейером две команды - ls и wc. Команда ls выводит содержимое каталога, а команда wc подсчитывает количество строк. Результатом выполнения нашей программы будет подсчет строк, выведенных командой ls.
В отцовском процессе запущен процесс ls. Всю выходную информацию ls загружает в канал, потому что мы ассоциировали стандартное устройство вывода с каналом. Далее мы в сыне запустили процесс wc, у которого стандартное устройство ввода (т.е. то, откуда wc читает информацию) связано с дескриптором чтения из канала. Это означает, что все то, что будет писать ls в свое стандартное устройство вывода, будет поступать на стандартное устройство ввода команды wc.
Мы говорили о том, что для того чтобы канал работал корректно, и читающий дескриптор получил признак конца файла, должны быть закрыты все пишущие дескрипторы. Если бы в нашей программе не была бы указана выделенная строка, то процесс, связанный с wc завис бы, потому что в этом случае функция, читающая из канала, не дождется признака конца файла. Она будет ожидать его бесконечно долго. В процессе отце подчеркнутую строку можно было бы не указывать, т.к. дескриптор закрылся бы при завершении процесса, а в процессе сыне такая строка нужна. Т.е. вывод таков: перед завершением работы должны закрываться все дескрипторы каналов, связанные с записью.
Каналом можно связывать только родственные процессы. Технически можно связывать несколько процессов одним каналом, но могут возникнуть проблемы.


Статьи по теме:

Понятие компьютерных преступлений
ОТОБРАЖЕНИЕ ПРОЦЕССА ПРОЕКТИРОВАНИЯ В ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ САПР
Приостановка печати документа
Количества и конфигурация оборудования
WordPad: Вставка времени и даты
Специальные панели Internet Explorer
Рисование многоугольников
Контроллеры и шины
Внешние каналы украинского сегмента сети Іnternet
Почтовые псевдонимы
База знаний
Открытие документа из папки
Автоматизации планирования печатного издания под Apple (Mac)
Обзор дисковых устройств
Что Такое Кодеки И Где Их Можно Скачать
Блокнот: Ведение журнала работы
Картриджи Оптом И В Розницу, Со Склада
Черный Баннер - 25й кадр интернета
СТАДИИ СОЗДАНИЯ САПР
Аналоговые вычислительные машины (АВМ)
Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети
Преимущества ЭС перед человеком - экспертом
Два формата таблицы FAT
Кому нужны ваши данные?..
Немного о контроллере прямого доступа к памяти
Критерий пользователя ЭС
Установка Системы Видеонаблюдения В Офис
Локальные шины
Работа с окнами
Финансы в Интернете
Поддержка драйвера сжатых дисков в MS DOS
Содержимое таблицы FAT
Таблицы параметров НМД и НГМД
Управление Памятью Freebsd
Робот Tartalo Стучится В Вашу Дверь
Транзисторы
Оборотная сторона медали Spyware
Odbc Firebird Или Все Же Ole Db Драйвер?
WordPad: Выделение текста начертанием
Поля элемента таблицы раздела диска
Провайдеры услуг Internet на Украине
Отличие ЭС от других программных продуктов
Сравнение темпов развития ЭВМ с темпами эволюции человека
Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети (ст. 274 УК)
Некоторые типовые конфигурации
Архитектура системы и реализация основных функций
Предпосылки создания квантовых компьютеров
Делайте резервные ропии профессионально - Norton Ghost 14
Спрячьте ваши важные документы компьютера в секундах
Рисование эллипса или окружности
Работа накопителя
Обмен данными через файл-фрагмент
Использование компьютеров
Ада и Си
Кибернетический подход