Соглашение | Публикация статей

Красивые рольшторы - roll-service.by

Процессы в операционной системе UNIX
Категория: Статьи

На прошлой лекции мы начали говорить о процессах в операционной системе UNIX. Можно однозначно сказать о том, что процессы и механизмы управления процессами в операционной системе - это одна из принципиальных особенностей операционной системы UNIX, т.е. тех особенностей, которые отличали систему при создании и отличают ее до сих пор. Более того, несмотря на старания господина Гейтса, ситуация такова, что он повторяет те программные интерфейсы, которые используются для взаимодействия управления процессами, а не фирмы разработчики UNIX-ов повторяют те интерфейсы, которые появились в Windows. Первенство операционной системы UNIX очевидно.
Мы говорили о том, что процесс в UNIX-е - это есть нечто, что зарегистрировано в таблице процессов. Соответственно каждая запись в таблице процессов имеет номер. Номера идут от нуля до некоторого предельного значения, которое предопределено при установке системы. Номер в таблице процессов - это есть, так называемый, идентификатор процесса, который в системе обозначается PID. Соответственно, подавляющее большинство действий, которые можно выполнить с процессом, выполняются при помощи указания идентификатора процесса. Каждый процесс характеризуется контекстом процесса. Это блок данных, характеризующий состояние процесса, в том числе в этом блоке данных указывается информация об открытых файлах, о правилах обработки событий, возникающих в процессе. В этом наборе данных хранится информация, которая образуется при полном «упрятывании» процесса при переключении системы с процесса на процесс. То есть когда происходит по той или иной причине переключение выполнения с одного процесса на другой, для того чтобы можно было восстановить работу процесса, некий набор данных размещается в контексте процесса. Этот набор данных заключает в себе содержимое регистровой памяти, некоторые режимы, которые установила программа и в которые вмешался процессор (например, содержимое регистра результата), точку возврата из прерывания. Плюс - контекст содержит много полезной информации, о которой мы будем говорить позже.
Мы говорили о том, что в некотором смысле определено понятие тела процесса. Тело процесса состоит из двух сегментов: сегмента текста и сегмента данных. Сегмент текста - это часть данных процесса, которые включают в себя код исполняемой программы. Сегмент данных - это те пространства оперативной памяти, которые могут статически содержать данные. Мы говорили, что в системе есть возможность иметь разделенные сегменты текста и сегменты данных. В свою очередь, система позволяет с одним сегментом текста связывать произвольную группу сегментов данных. Это, в частности, бывает полезно, когда в системе одновременно работают несколько одинаковых процессов.
Принципиально важная вещь, связанная с организацией управлением процессами, - механизм fork/exec. При обращении к функции fork происходит создание нового процесса, который является копией текущего процесса. Незначительные отличия этих процессов есть в идентификаторе процессов. Возможны некоторые отличия в содержимом контекста процесса.
Функция exec позволяет заменять тело процесса, т.е. при обращении к этой функции, в случае успешного ее выполнения, тело процесса меняется на новое содержимое, которое указано в качестве аргументов функции exec в виде имени некоторого файла. Мы говорили о том, что сама по себе функция fork почти бессмысленна. Попробуем уловить смысл функции exec - можно выполнять в рамках одного процесса несколько задач. Возникает вопрос: почему формирование этого процесса раздроблено на две функции fork и exec? Чем это обосновано? Во многих системах есть одна функция, формирующая процесс с заданным содержимым. Дело в том, что при обращении к функции fork, как уже неоднократно было сказано, создается копия процесса, в том числе процесс-сын наследует все те файлы, которые были открыты в процессе отце и многие другие права и привилегии. Бывает ситуация, когда не хотелось бы, чтобы наследник приобретал все особенности отца. И есть возможность между выполнением функций fork и exec выполнить какие-то действия по закрытию файлов, открытию новых файлов, по переопределению чего-либо и т.д. В частности, вы при практических занятиях должны освоить отладчик системы deb. Какова суть его работы?
Пусть есть процесс-отладчик deb; запускается процесс, который отлаживается, и, передавая некоторую информацию от отладчика к отлаживаемому процессу, можно производить отладку. Но отлаживать можно только тот процесс, который разрешил себя отлаживать. Как раз здесь используется раздвоение fork/exec. Сначала я делаю копию своего процесса deb’, после этого я разрешаю проводить трассировку текущего процесса, а после этого я запускаю функцию exec с отлаживаемой программой. Получается ситуация, что в процессе образуется именно та программа, которую надо отладить, и она, не подозревая об этом, уже работает в режиме отладки.

Загрузка операционной системы и образование начальных процессов. Сегодня мы с вами поговорим о загрузке операционной системы и образовании начальных процессов. При включении вычислительной системы из ПЗУ (постоянно запоминающего устройства) запускается аппаратный загрузчик. Осуществляется чтение нулевого блока системного устройства. Из этого нулевого блока запускается программный загрузчик ОС UNIX. этот программный загрузчик осуществляет поиск и запуск файла с именем unix, который является ядром операционной системы. В начальный момент происходят действия ядра по инициализации системы. Это означает, что в соответствии с параметрами настройки системы, формируются необходимые таблицы, инициализируются некоторые аппаратные интерфейсы (инициализация диспетчера памяти, часов, и т.д.). После этого ядро системы создает процесс №0. При этом нулевой процесс является вырожденным процессом с точки зрения организации остальных процессов. Нулевой процесс не имеет кода, он содержит только контекст процесса. Считается, что нулевой процесс активен, когда работает ядро, и пассивен во всех остальных случаях.
К моменту образования нулевого процесса в системе уже образованы таблицы, произведена необходимая инициализация, и система близка к готовности работать. Затем ядро копирует нулевой процесс в первый процесс. При этом под первый процесс уже резервируются те ресурсы, которые необходимы для полноценного процесса, т.е. для него резервируются сегмент контекста процесса, и для него резервируется память для размещения тела процесса. После этого в первый процесс загружается программа init. При этом запускается диспетчер процессов. И ситуация такова: существует единственный процесс, реально готовый к выполнению. Процесс init реально завершает запуск системы.
Запуск системы может происходить в двух режимах. Первый режим - это однопользовательский режим. В этом случае процесс init загружает интерпретатор команд shell и ассоциирует его с консольным терминалом, а также запускает стартовый командный файл /etc/rc. Этот файл содержит произвольные команды, которые может устанавливать администратор системы, если он считает необходимым выполнить их при старте системы. Это могут быть команды, предположим, запуска программы тестирования целостности файловой системы или проверки расписания и, в зависимости от расписания, запуска процесса, который будет архивировать файловую систему и т.д. Т.е. в этом командном файле в общем случае могут находиться произвольные команды, установленные администратором системы. При этом если система запускается в однопользовательском режиме, на консольный терминал подается интерпретатор команд shell и считается, что консольный терминал находится в режиме супервизора (суперпользователя) со всеми правами, которые можно предоставить администратору системы.
Второй режим - многопользовательский. Если однопользовательский режим обычно используется в ситуациях, когда в системе произошла аварийная ситуация и необходимы действия администратора системы или системного программиста, то многопользовательский режим - это штатный режим, который работает в нормальной ситуации. При многопользовательском режиме процесс init запускает для каждого активного терминала процесс getty. Список терминалов берется из некоторого текстового файла, а их активность или пассивность - это прерогатива аппаратных свойств конкретного терминала и драйвера, который обслуживает данный терминал (когда вы включаете терминал, идет сигнал по соответствующему интерфейсу о включении нового устройства; система осуществляет идентификацию этого устройства в соответствии с портом, к которому подключен этот терминал).
Процесс getty при запуске сразу же запрашивает login. Копия процесса getty работает на один сеанс работы с пользователем, т.е. пользователь подтвердил свое имя и пароль, выполняет какие-то действия, и, когда он выполняет команду завершения работы, то копия процесса getty завершает свою работу. После завершения работы процесса getty, связанного с конкретным терминалом, запускается новая копия процесса getty.
Вот такая схема. Это нетрадиционные приемы формирования процессов в UNIX-е. Нетрадиционно формируется нулевой процесс (и он сам по себе нетрадиционен), нетрадиционно формируется первый процесс (который также нетрадиционен). Все остальные процессы работают по схеме fork/exec.

Эффективные и реальные идентификаторы процесса. С каждым процессом связано три идентификатора процесса. Первый - идентификатор самого процесса, который был получен при формировании. Второй - это т.н. эффективный идентификатор (ЭИ). ЭИ - это идентификатор, связанный с пользователем, запустившим этот процесс. Реальный идентификатор (РИ) - это идентификатор, связанный с запущенным в виде процесса файлом (если я запускаю свой файл, то ЭИ и РИ будут одинаковы, если я запускаю чужой файл, и у этого файла есть s-бит, то в этом случае РИ будет идентификатором владельца файла и это означает, что запущенному процессу будут делегированы права этого владельца).

Планирование процессов в ОС UNIX. Планирование основывается на понятии приоритета. Чем выше числовое значение приоритета, тем меньше приоритет. Приоритет процесса - это параметр, который размещен в контексте процесса, и по значению этого параметра осуществляется выбор очередного процесса для продолжения работы или выбор процесса для его приостановки. В вычислении приоритета используются две составляющие - P_NICE и P_CPU. P_NICE - это пользовательская составляющая приоритета. Она наследуется от родителя и может изменяться по воле процесса. Изменяться она может только в сторону увеличения значения (до некоторого предельного значения). Т.е. пользователь может снижать приоритет своих процессов. P_CPU - это системная составляющая. Она формируется системой следующим образом: по таймеру через предопределенные периоды времени P_CPU увеличивается на единицу для процесса, работающего с процессором (когда процесс откачивается на ВЗУ, то P_CPU обнуляется).
Процессор выделяется тому процессу, у которого приоритет является наименьшим. Упрощенная формула вычисления приоритета такова:
ПРИОРИТЕТ = P_USER + P_NICE + P_CPU
Константа P_USER различается для процессов операционной системы и остальных пользовательских процессов. Для процессов операционной системы она равна нулю, для процессов пользователей она равна некоторому значению (т.е. «навешиваются гирьки на ноги» процессам пользователя, что бы они не «задавливали» процессы системы). Это позволяет априори повысить приоритет системных процессов.

Схема планирования свопинга. Мы говорили о том, что в системе определенным образом выделяется пространство для области свопинга. Имеется проблема. Есть пространство оперативной памяти, в котором находятся процессы, обрабатываемые системой в режиме мультипрограммирования. Есть область на ВЗУ, предназначенная для откачки этих процессов. В ОС UNIX (в модельном варианте) свопирование осуществляется всем процессом, т.е. откачивается не часть процесса, а весь. Это правило действует в подавляющем числе UNIX-ов, т.е. свопинг в UNIX-е в общем не эффективен. Упрощенная схема планирования подкачки основывается на использовании некоторого приоритета, который называется P_TIME и также находится в контексте процесса. В этом параметре аккумулируется время пребывания процесса в состоянии мультипрограммной обработки, или в области свопинга.
При перемещении процесса из оперативной памяти в область свопинга или обратно система обнуляет значение параметра P_TIME. Для загрузки процесса в память из области свопинга выбирается процесс с максимальным значением P_TIME. Если для загрузки этого процесса нет свободного пространства оперативной памяти, то система ищет среди процессов в оперативной памяти процесс, ожидающий ввода/вывода и имеющий максимальное значение P_TIME (т.е. тот, который находился в оперативной памяти дольше всех). Если такого процесса нет, то выбирается просто процесс с максимальным значением P_TIME.
Эта схема не совсем эффективна. Первая неэффективность - это то, что обмены из оперативной памяти в область свопинга происходят всем процессом. Вторая неэффективность (связанная с первой) заключается в том, что если процесс закрыт по причине заказа на обмен, то этот обмен реально происходит не со свопированным процессом, т.е. для того чтобы обмен нормально завершился, весь процесс должен быть возвращен в оперативную память. Это тоже плохо потому, что, если бы свопинг происходил блоками памяти, то можно было бы откачать процесс без той страницы, с которой надо меняться, а после обмена докачать из области свопинга весь процесс обратно в оперативную память. Современные UNIX-ы имеют возможность свопирования не всего процесса, а какой-то его части.


Статьи по теме:

Поиск данных по ключевым словам (WAIS)
Зарождение кибернетики
Таблица разделов и логические диски
Просмотр графики в Программе просмотра изображений и факсов
Ресурсная и социокультурная концепции информационной среды как пространства социальных коммуникаций
Законы алгебры логики
Способы совершения компьютерных преступлений
ИСПОЛЬЗОВАНИЕ СУБД ACCESS 7.0
Преступления в сфере компьютерной информации
Настройки браузера Microsoft Internet Explorer
Концепция развития информационного общества в Европе
Почему именно Vista?
Линейная Магнитная Запись Dlt (Dlt-V/Sdlt/Dlt-S4)
Экспорт проекта в файл
Настройка интерфейса
Панель задач Microsoft Windows XP
Прокси-Сервер - Это Действенный Способ Защиты Информации, А Также Преграда Для Атак Хакеров
Пути и фазы моделирования интеллекта
Ада и Си
Crm Система, Внедрение Crm Систем
Внедрение Crm Системы Sales Expert 2 В Компании «Сибаэроинж»
Области в которых используются компьютерные системы на базе CompactPCI
Изменение формата графического файла
Использование паролей
Политика безопасности Microsoft Internet Explorer
Микротравмы
Запись фильма с помощью командной строки
WordPad: Отмена и повтор последнего действия
Коммерческое использование
Автоматическая Генерация Осмысленного Текста Возможна?
Экспертные системы
Новое Решение На Рынке Soa
Internet
Некоторые характеристики ПЛАТЕЖНОЙ СИСТЕМЫ
Появление IBM PC
Кому нужны ваши данные?..
Математическая логика в криптографии
Расследование нарушения правил эксплуатации ЭВМ: системы ЭВМ или их сети
Прочие функции Microsoft Internet Explorer 6
Количества и конфигурация оборудования
Электронный подход
ПРЕСТУПЛЕНИЕ В СФЕРЕ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ
Выбор системы видеонаблюдения
Следственный осмотр
Производственный и технологический процессы
Использование нестандартных значков
Ада Августа Байрон
Печать фотографий через Интернет
Поиск фотографий в Интернете
Локальные шины
Разработка контрольно-информационных инструментов для PADS
Искусственный интеллект и теоретические проблемы психологии
Классификация ЭВМ
MPR II
Что такое кибернетика?